Tools For Assessing FUTURE TRANSIT RIDERSHIP

Jonathan Braun, Ryan Colburn, Mark Funke, Rahul Pasawala, & Zachary Starbuck

Urban Transportation Planning Georgia Institute of Technology Fall 2018

PROJECT OVERVIEW

I. Context 1. Transit in Atlanta **II.** Travel demand models 1. 4-Step 2. Activity-Based 3. STOPS III. Improving data inputs **IV.** Recommendations

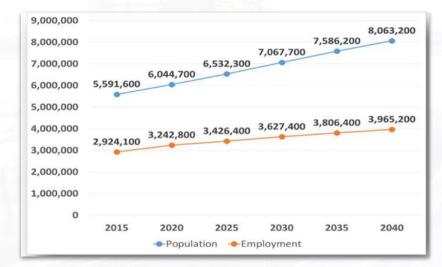
WHY TRANSIT?

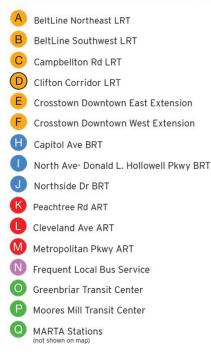
- Reduces road congestion
- Improves air quality
 - Clean Air Act and federal funding
- Increases access, choice, mobility and equity
- Fosters economic development
 - Transit-Oriented Development
 - Expands workforce commuter shed
 - Global competitiveness

Image 1: Source, Trains Magazine

WHY TRANSIT IN ATLANTA?

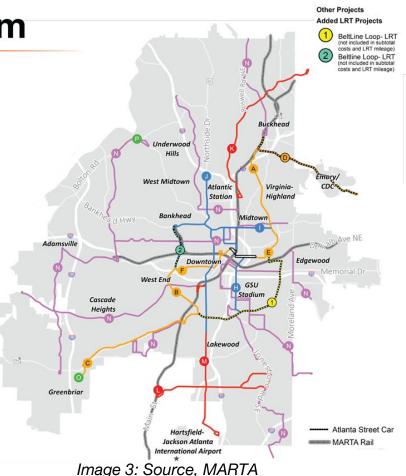
- Rapid projected growth
 - 3rd fastest growing US metro¹
- Extensive sprawl and automobile dependence
 - 4th most congested city²
 - 91% of the MSA population lives outside of Atlanta³
- Environmental, equity and quality of life concerns




Image 2: Source, ARC

WHAT ARE ATLANTA'S FUTURE TRANSIT PLANS?

- 22 miles of light-rail transit
- 22 miles of commuter rail*
- 14 miles of bus rapid transit
- 26 miles of arterial rapid transit


- 2 new transit centers
- New fixed-route bus services
- Upgrades to existing rail stations
- Over \$2.7b in investment

More MARTA Atlanta Program

(LRT) Light Rail Transit (ART) Arterial Rapid Transit (BRT) Bus Rapid Transit

Project schedules and funding plans are being developed.

WHY IS RIDERSHIP FORECASTING IMPORTANT?

- Allocates transportation supply to meet demand
- Guides capital investment, infrastructure and service improvements
 - Makes for more informed spending
 - \$85 billion proposed in long-term capital investments through 2040⁴
- Increases funding opportunities
 - Transit funds are worth billions; bad models do not get funding
 - Reliable models are required to receive competitive federal funding
- Helps gain support from relevant stakeholders

HOW DO YOU FORECAST RIDERSHIP?

4-Step Model

- Trip Generation
 - Estimate total trips between TAZs
- Trip Distribution
 - Where do trips go?
- Mode Choice
 - Car, bus, train, walk?
- Trip Assignment
 - Which route will be taken?

Activity-Based Models (ABM)

- Predicts behavior based on choices of individuals/households
- Forecasts household and personal level travel choices
- Uses socioeconomic inputs obtained from regional surveys

WHY USE AN ACTIVITY-BASED MODEL?

Behavior / <u>choice</u> based

Accounts for <u>trip-chaining</u>

- Every trip in an ABM starts and ends at home
- It allows for a more logical explanation of human behavior
- The order in which trips are made has behavioral significance in forecasting
- Allows for a more logical explanation for daily behavior
- Numerous individual characteristics of travelers can be taken into account
 - Traditional 4-Step models assumed all travelers either have the same attributes, or divides them into discrete classes
 - ABMs model *individual* travelers, and therefore can account for a more continuous distribution of traveler choices

Activity-based models are optimally suited for predicting long-range regional transportation patterns across a multitude of travel modes.

- Ridership Forecasting has improved with the introduction of regional models, such as ABMs.
- Regional models require extensive amounts of data.
- This causes delays in allocating transit funding.
- Delays result in increased project costs.

WHAT IS STOPS?

- Simplified Trips On Project Software
- Follows a conventional 4-step travel modeling process:
 - Generation and distribution data is replaced with CTPP data
- Uses performance-based General Transit Feed Specification (GTFS)
 - A standardized database to compare transit systems across the country
- Relies on framework of a given regional model

WHAT IS STOPS?

•FTA uses two components to evaluate proposed major transit projects:

•Predicted number of trips generated

•Changes in automobile Vehicle Miles Travelled

•STOPS predicts travel patterns for No-build and Build scenarios

•STOPS quantifies FTA's trips-on-project evaluation measure for FTA major capital funding

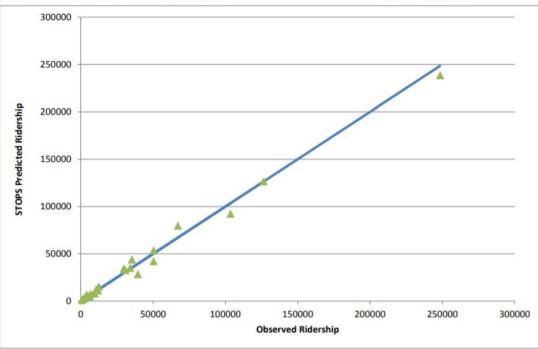
•STOPS can compute the change in Vehicle Miles Travelled based on the change in overall transit ridership

Initial STOPS Set-up Steps	TransCAD GIS			
Select GIS Executable	C:\Program Files\TransCAD 6.0\Tow.exe		STOR	
Select Python Executable*				
* - Only used for ArcGIS				
Scenario Set-up Steps				
1. Select/Create Parameter File	stameter File		STOPS Batch Steps	
2. Specily Station Locations		Files Not Found	Current Yex C Opening Year C 10 Year C 20 Year	
3. Edit Parameter File		Files Not Found	Not Defined Not Defined Not Defined	
4 List and Check TAZ and CTPP Files		Files Not Found	11. Run Batch Steps Not Comple	
5. List and Check GTFS Files		Files Not Found	CTPP Extract Not Complete	
5a EXST GTFS Test 50 NOBL GTFS Test 5c BLD GTFS Test		Optional		
6. Define Forecast Years		Files Not Found	F GTF Post Not Complete	
6. Deline Fo	ecast reari	Files Not Found	Prepare Forecast Years Not Complete	
Data Preparation Steps			STOPS Not Complete	
7. Create Station Buffers		Files Not Found		
8. Define Districts and Zonal Data			STOPS Reporting	
9. Create MPO-TAZ Equivalency and Generate Zonal SE Forecasts		Files Not Found	12. Report STOPS Results	
10. Prepare Pedestrian Environment Data		Files Not Found	13. Map STOPS Results	
Messages				

WHY USE STOPS?

Image 5: Source, FTA

Region	STOPS Run Time (recent experience)	Regional Travel Model Run Time (No Build + Build)
Jacksonville / Northeast Florida	<1 hour	8-16 hours
Miami / Southeast Florida	3-5 hours	3 days (full run)
Orlando / East Central Florida	1-2 hours	8-12 hours
Tampa / West Central Florida	1-2 hours	4.5-7 hours


Run time for STOPS is less than <u>HALF</u> of regional model

WHY USE STOPS? Image 6: Source, FTA Implications for FTA reviews FTA review of formally submitted forecasts Source of forecast Transit rider **Properties of** Validation vs. **Plausibility of** survey data the travel model current riders forecasts **Regional model** Incremental model STOPS

The lower scrutiny threshold by the FTA reduces review time by 50%

IS STOPS RELIABLE?

Image 7: Source, FTA

Predicted and Observed Weekday Ridership on Fixed Guideway Systems Used in STOPS Development

WHAT ARE THE LIMITATIONS OF STOPS?

- It relies on regional travel models for roadway travel condition, travel times, and distances
- It focuses on ridership forecasts for fixed transit systems
- Variables such as accessibility are not considered in determining future year travel patterns

WHICH MODEL IS PREFERED?

- ABMs incorporate vast amounts of data to realistically model regional travel patterns
- STOPS utilizes federally standardized data sets in conjunction with inputs based on regional models and local datasets to create small-scale models of fixed-route systems
 - Designed to augment an existing regional model, such as an ABM
 - Not an independent system capable of modeling all regional travel patterns
- Both models should be used in tandem
- Both models are limited by the quality of the data inputs they are provided with

WHY UPDATE THE DATA?

Large Scale Changes In:

- Gas Prices
- Employment

Industry Disruptors

- Uber, Lyft, & Other Rideshares
- E-Scooters
- Electric & Autonomous
 Vehicles

Image 8: Source, Milwaukee Journal Sentinel

AUTOMATIC FARE COLLECTION

- Smart cards collect data for each system entry and exit in addition to facilitating fare payment
- Data can be assigned to unique users via the smart cards
- Most useful in networks that require users to "tap" upon entry
 <u>AND</u> exit

AUTOMATIC FARE COLLECTION

AUTOMATIC PASSENGER COUNT SYSTEMS

- Image sensors typically allow for highly accurate passenger counts
 - Accuracy can be verified with CCTV
 - Modern sensors can distinguish people entering and exiting from inanimate objects, such as luggage and strollers
- Critical for accurate ridership values on systems without faregates

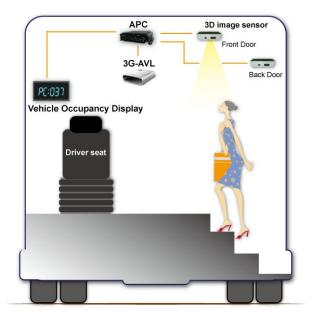


Image 10: Source, EcAF Technology

APP-BASED CROWDSOURCING

- Allows for direct observation of:
 - Travel Habits
 - Route Choices
 - Origins & Destinations
- Obtains information from any app with location services enabled
- Improves customer service opportunities

Image 11: Source, Transit App

BLUETOOTH TECHNOLOGY

- Can locate devices and observe their movement, even when GPS is not enabled
 - \circ $\,$ Up to 250 devices can be detected by a single sensor $\,$
- Not dependant on an internet or cellular network connection
- Lower battery consumption when compared to Wi-Fi connections & Satellite-Based GPS Systems

mage 12: Source, Li<u>belium</u>

- Ample opportunity for improved customer service
 - Contactless payment
 - Improved communication
 - Location-specific advertising
 - Improved accessibility

RECOMMENDATIONS

I. Continue to use an activity-based model for regional transportation planning **II.** Incorporate STOPS into modeling practices for transit-specific projects Improve data inputs by increasing survey frequency and engagement IV. Incorporate data from new sources using new and improving technologies.