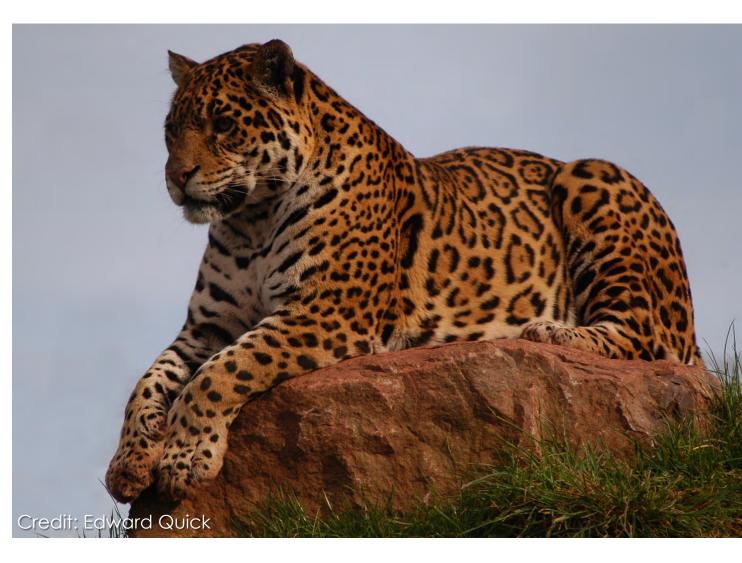
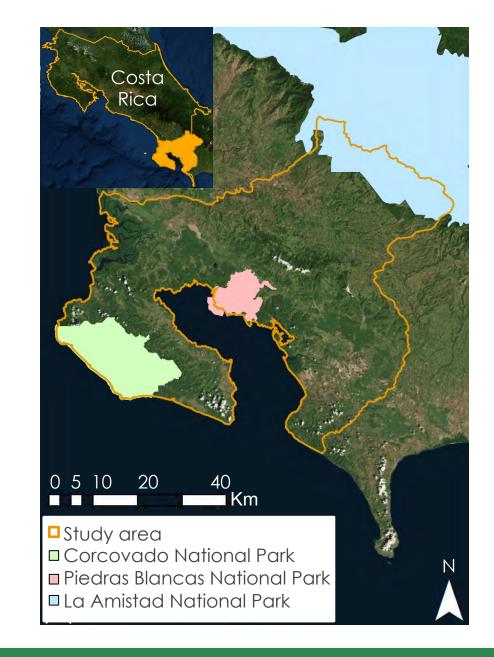


National Aeronautics and Space Administration

TALAMANCA-OSA ECOLOGICAL FORECASTING II


Assessing Habitat Suitability and Human-Jaguar Conflict Areas to Identify Potential Jaguar Corridors Connecting La Amistad and Corcovado National Parks in Costa Rica

Samuel Furey Olivia Landry Samantha Trust Iris Fynn


- Jaguars listed as Near Threatened on the International Union for Conservation of Nature (IUCN) Red List
- Endangered throughout Costa Rica
- Two isolated populations:
 - Talamanca Mountains
 - Osa Peninsula
- Corridor connects national parks and links habitat fragments

 Study area encompasses 5382 km² including the Talamanca Mountains and the Osa Peninsula

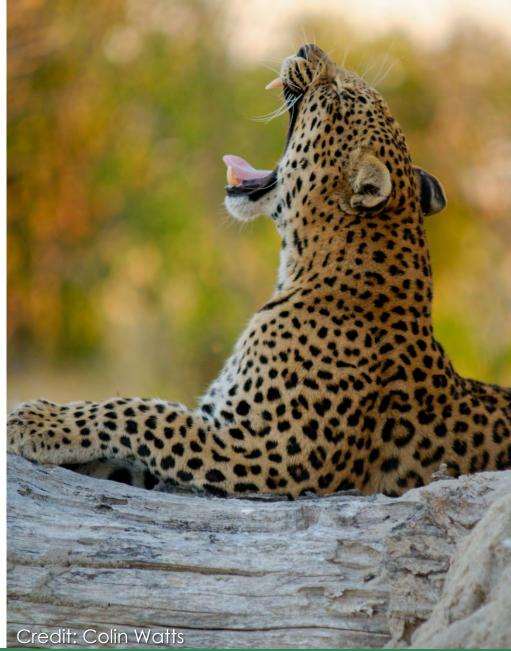
- La Amistad International Peace Park
- Piedras Blancas National Park
- Corcovado National Park
- Study Period: January 1987 to June 2019, Forecasting to 2030

Arizona Center for Nature Conservation – Phoenix Zoo

Dr. Jan SchipperField Conservation
Research DirectorAnnie JohnsonResearch AssistantsChelsey TellezKyli DentonKinley RaganKinley Ragan

Osa Conservation

Hilary Brumberg Healthy Rivers Program Coordinator


Credit: Arizona Center for Nature Conservation

Credit: Osa Conservation

Community Concerns

- Jaguar Habitats & Population: Crops like pineapple and African oil palm plantations act as barriers to movement. Only an estimated 12 jaguars remain in Corcovado National Park.
- Human–Jaguar Conflicts: Decreased habitat size drives jaguars closer to humans, increasing the likelihood of human-jaguar conflict and retaliatory hunting.
- Ecosystem Health: Since jaguars are an apex predator and keystone species, the reduced number of individuals causes a negative trophic cascade.

- Conduct historical land use and land cover analyses (1987 and 1997)
- Forecast land use and land cover classifications to year 2030
- Create a human-jaguar conflict risk map based on environmental and human use factors
- Model corridors to aid jaguar movement between Costa Rica's La Amistad International Peace Park and Corcovado National Park

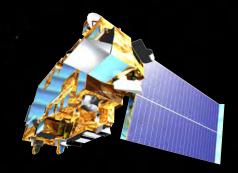
Terra

Suomi-NPP

Landsat 5 Thematic CALIPSO Mapper (TM)

CYGNSS-4 ICIESEGNSS-2 GPM

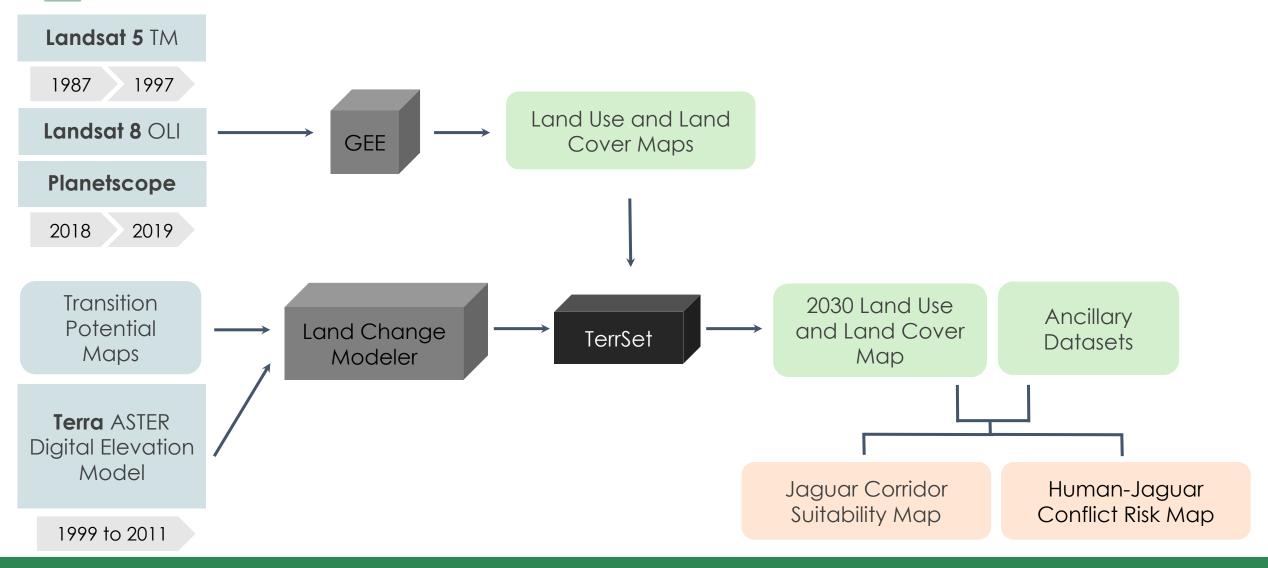
Cloudsa


NASA Satellites and Sensors

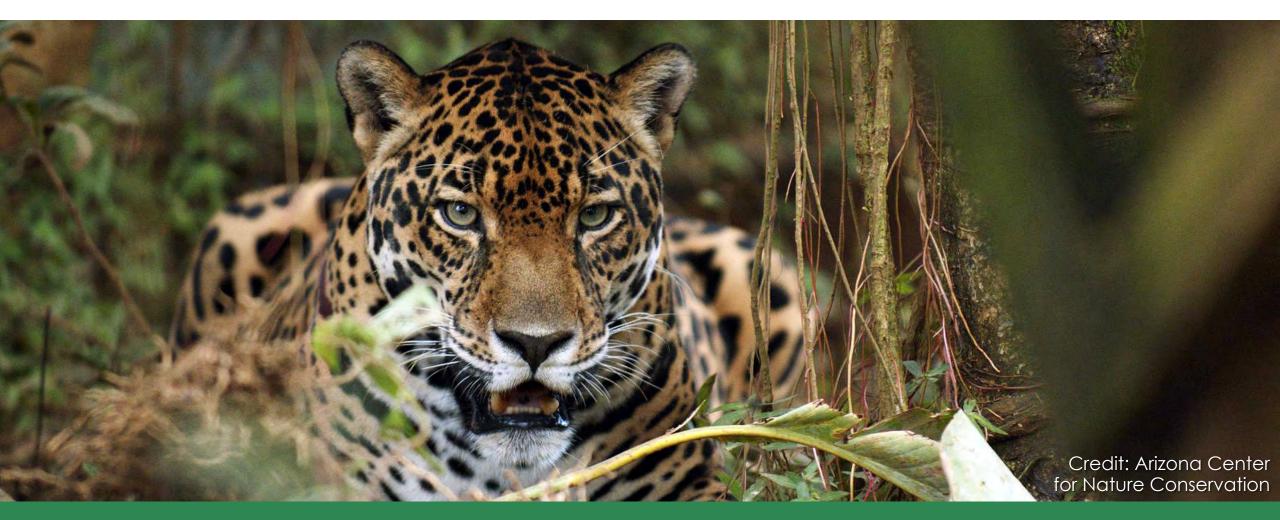
GYGNSS Landsat 8 **Operational Land** Imager (OLI)

ISS

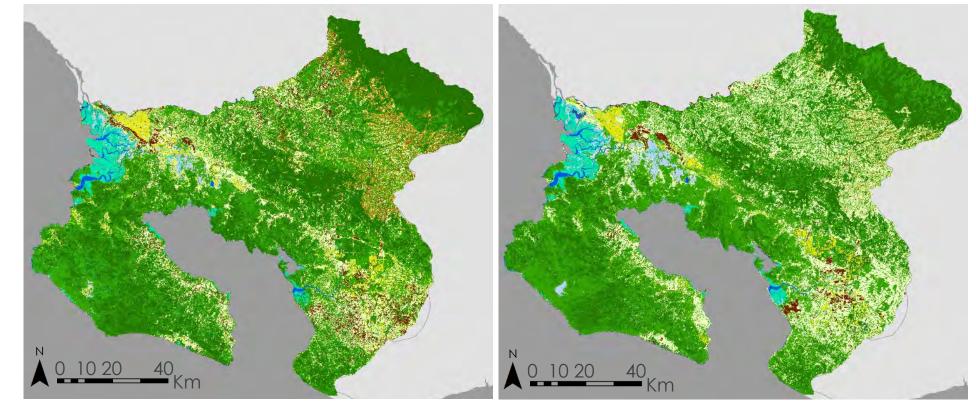
SMAP


Terra Advanced Spaceborne Aura **Thermal Emission** and **Reflection** Radiometer (ASTER)

Jason-2


Aqua

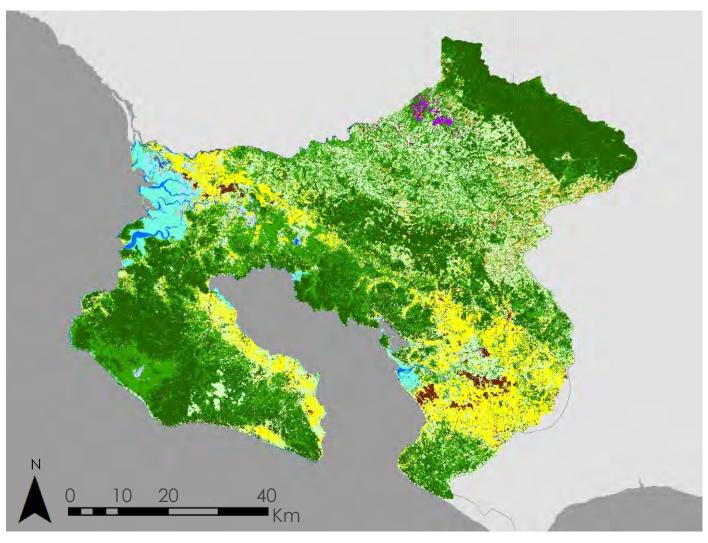
Methodology



Results

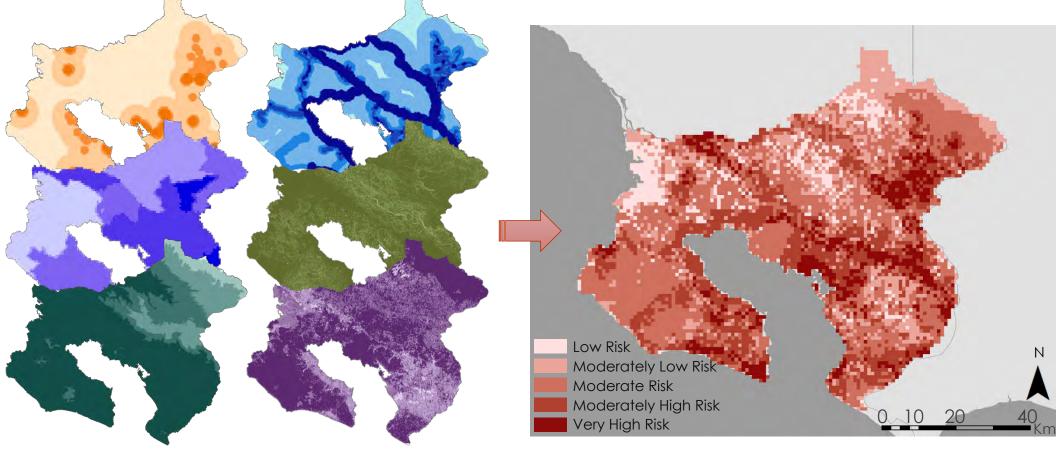
Historical Land Use and Land Cover

Coffee
Exposed Soil/Urban
Grassland/Pasture
Mangrove
Wetland
Palm Plantation
Páramos
Primary Forest
Secondary Forest
Water



Land Use & Land Cover 1987

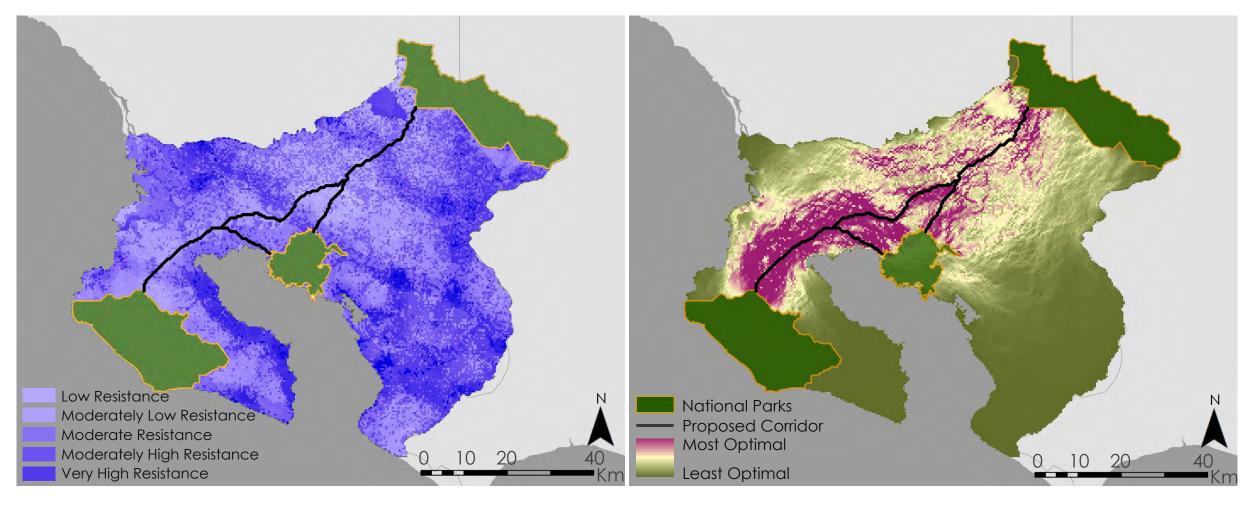
Land Use & Land Cover 1997


Projected 2030 Land Use and Land Cover

Coffee
Exposed Soil/Urban
Grassland/Pasture
Mangrove
Wetland
Palm Plantation
Páramos
Pineapple
Primary Forest
Secondary Forest
Water

Projected Land Use & Land Cover 2030

Projected 2030 Human-Jaguar Risk Assessment



Reclassified Risk Value Rasters

Human-Jaguar Conflict Risk Assessment

000 000 00

Corridor Connecting La Amistad and Corcovado National Parks

Errors and Uncertainties

- When using TerrSet Land Change Modeler the future changes used during forecasting are assumed to change at the same rate as change in the historical data provided
- Legend categories must be identical in both land cover dates in order to project accurately
- Pineapple was not forecasted to 2030 as it was non-existent in our study area in 1987

- Between 2019 and 2030
- Palm plantation will increase by 3.7%, with a slight increase around the Pan-American Highway and a significant increase in the northern Osa region.
- Secondary forest will decrease by 4.3% as it is replaced with palm plantations in the northern Osa, encroaching on Corcovado
- There is a projected higher human-jaguar conflict risk around the Pan-American Highway and in populated areas, specifically in Playa Pan Dulce, Pavones, Puerto Jiménez, Golfito, Paso Canoas and San Vito.
- Corridors modeled in Linkage Mapper showed two potential corridors through the Buenos Aires Canton area

Future Work

- Forecast using historical data in addition to more recent land use and land cover data
- Later work should incorporate the use of Fragstats metrics in identifying patterns and relationships between the land cover types.
- Model potential jaguar corridors and risk assessments using jaguar prey availability data

Applications to Planning

- Will help facilitate the decision-making process for future environmental planning in Costa Rica
- Will inform planners about the implications of non-sustainable agricultural and planning practices on wildlife

Acknowledgements

Science Advisors – University of Georgia

- Dr. Marguerite Madden, Director Center for Geospatial Research
- Dr. Steve Padgett-Vazquez, University of Georgia

Contributors

- Osa Peninsula Water Resources II Team
- Talamanca-Osa Ecological Forecasting I Team

GA – Athens Node Leadership

 Shelby Ingram, Acting Center Lead/Project Coordination Fellow

Project Partners

Arizona Center for Nature Conservation

- Dr. Jan Schipper, Field Conservation Research Director
- Annie Johnson, Chelsey Tellez, Kyli Danton and Kinley Ragan, Field Conservation Research Assistants

Osa Conservation

 Hilary Brumberg, Healthy Rivers Program Coordinator

Questions?

- **Appendices**
- Appendix A
 - Surface reflectance bands and wavelengths used to calculate NDVI and EVI
- Appendix B
 - Equations used to calculate NDBI, NDMI, NDWI, TCB, TCG, TCW
- Appendix C
 - Partner and literature sources for elevation cut offs for land use and land cover classification
- Appendix D
 - Transition Potential Maps used for TerrSet
- Appendix E
 - Values and weights assigned for human-jaguar conflict risk map
- Appendix F
 - Values and weights assigned for resistance raster used as an input for Linkage Mapper
- Appendix G
 - Cantones (poltical districts) within Study Area

Table A1

Surface reflectance bands and wavelengths used to calculate NDVI and EVI

	Landsat 5 TM		Landsat 8 OLI	
Surface Reflectance	Band	Wavelength (µm)	Band	Wavelength (µm)
Blue	1	0.45 - 0.52	2	0.452 - 0.512
Red	3	0.63 - 0.69	4	0.636 - 0.673
NIR	4	0.77 - 0.90	5	0.851 - 0.879

Normalized Difference Built Index (NDBI)

 $NDBI = \frac{SWIR - NIR}{SWIR + NIR}$

Normalized Difference Moisture Index (NDMI)

 $NDMI = \frac{NIR - SWIR}{NIR + SWIR}$

Tasseled Cap Brightness (TCB) TCB= (0.2043*BLUE)+(0.4158*GREEN)+(0.5524 * RED)+(0.5741 * NIR)+(0.3124 * SWIR1)+(0.2303 * SWIR2)

Tasseled Cap Greenness (TCG) TCG=(-0.1603*BLUE)+(0.2819*GREEN)+(-0.4934*RED)+(0.7940*NIR) +(-0.0002*SWIR1)+(-0.1446 * SWIR2)

Normalized Difference Water Index (NDWI)

 $NDWI = \frac{Green - NIR}{Green + NIR}$

Tasseled Cap Wetness (TCW) TCW= (0.0315*BLUE)+(0.2021*GREEN)+(0.3102*RED)+ (0.1594*NIR)+(-0.6806*SWIR1)+(-0.6109*SWIR2)

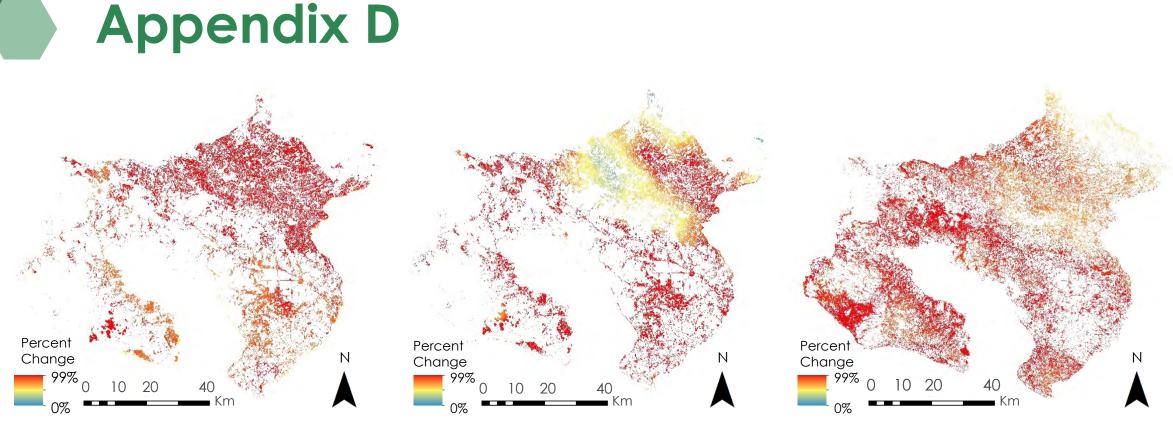

Equations used to calculate NDBI, NDMI, NDWI, TCB, TCG, TCW

Table C1

Partner and literature sources for elevation cut offs for land use and land cover classification

Class	Elevation Restrictions in Code	Elevation Range from Literature	Partner Source	Literature Source
Grassland/Pasture	Less than 2000 m	~1500 m	Dr. Jan Schipper	Holl & Quiros- Nietzen 1999
Paramos	Greater than 2000 m	3100 to 3300 m	Dr. Jan Schipper	Kappelle & Horn 2016
Coffee	Greater than 870 m	1000 to 1300 m	Dr. Jan Schipper	Avelino et al. 2005
Mangrove	Less than 500 m	less than 200 m	Jiménez, J. A. 2016	Jiménez, J. A. 2016
Melina/Teak on the Osa Peninsula	Less than 120 m	N/A	Hilary Brumberg	N/A
Wetland	Less than 500 m	less than 200 m	Jiménez, J. A. 2016	Jiménez, J. A. 2016

Transition from Grassland/Pasture to Exposed Soil/Urban Transition from Grassland/Pasture to Palm Plantation Transition from Secondary Forest to Grassland/Pasture

Figure D1. Transition Potential Maps used for TerrSet

Appendix E

Elevation (m)	Suitability Value (0-3, 3 being most suitable)
0-1000	3
1000-2000	2
2000-3000	1
>3000	1

Slope (degrees)	Suitability Value (0-3, 3 being most suitable)
0-15	3
15-30	2
30-45	1
>45	0

Land Cover Type	Suitability Value (1-5, 5 being most suitable for jaguars)
Pineapple	1
Palm Plantation	2
Mangrove	3
Water	2
Grassland/Pasture	3
Exposed Soil/Urban	1
Primary Forests	5
Secondary Forests	5
Wetland	4
Coffee	4
Paramos	1

Pop. Count (persons/sq. km)	Risk Value (0-3, 3 having highest risk)
0	0
0-5	1
5-25	2
25-150	3

Tables E1- E7. Values and weightsassigned for human-jaguar conflict risk

тар

Risk Value (1-5, 5 being highest
risk of conflict with humans)
1
1
2
3
4
5
5

Bivariate Key Values (based on distance and size of road)	Risk Value (1-5, 5 being highest risk of conflict with humans)
distance and size of foad)	lisk of connet with humans)
0	1
1	1
2	2
3	3
4	4
5	5
6	5

Layer Name	Weight of Influence (%, must
	add to 100)
Slope	10
Elevation	10
LULC	30
Population	10
Cities	20
Roads	20

Appendix F

Elevation (m)	Resistance Value (1-10, 10 being highest resistance to movement of jaguars)
0-1000	0
1000-2000	2
2000-3000	6
>3000	10
Slope (degrees)	Resistance Value (1-10, 10 being highest resistance to movement of jaguars)
0-15	0
15-30	2
30-45	5
45-60	7
>60	10
Distance to River (km)	Resistance Value (1-10, 10 being highest resistance to movement of jaguars)
05km	0
.5-1km	1
1-2km	2
2-4km	3
4-8km	4
8-16km	5
>32km	5

Land Cover Type	Resistance Value (1-10, 10 being highest resistance to movement of jaguars)
Pineapple	10
Palm Plantation	6
Mangrove	5
Water	9
Grassland/Pasture	5
Exposed Soil/Urban	10
Primary Forests	0
Secondary Forests	1
Wetland	3
Coffee	4
Paramos	10

Tables F1- F7. Values and weights assigned for resistance raster used as an input for Linkage Mapper

Bivariate Key Values (based on	Resistance Value (1-10, 10 being
distance and size of settlement)	highest resistance to movement of
	jaguars)
0	0
1	2
2	4
3	6
4	8
5	10
6	10

Bivariate Key Values (based on	Resistance Value (1-10, 10 being
distance and size road)	highest resistance to movement of
	jaguars)
0	0
1	2
2	4
3	6
4	8
5	10
6	10

Layer Name	Weight of Influence (%,
	must add to 100)
Slope	5
Elevation	5
LULC	40
Distance to Rivers	10
Cities	20
Roads	20

Appendix G

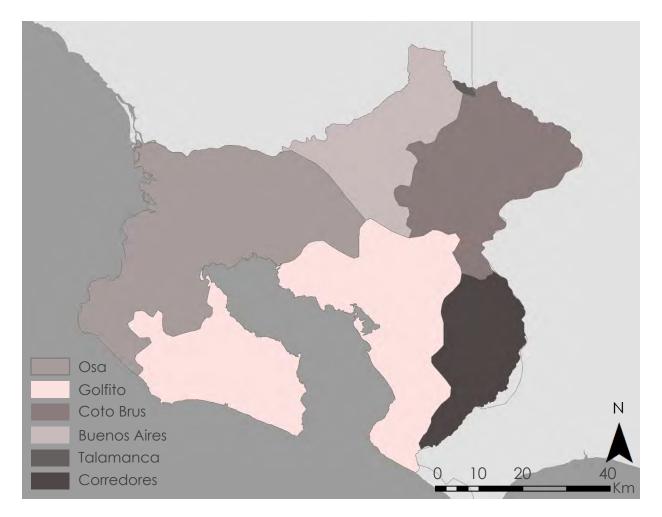


Figure G1. Cantones (political districts) of Study Area