Local planning and implementation for watershed protection: The Soque Partnership in Habersham County

Georgia Planning Association May 12, 2011

Watershed Location

- 160 square miles
- Tributary to Chattahoochee River
- Beneficial uses

Background

- 303(d) listed streams
 - fecal coliform
 - biological (sediment)
- 319(h) grants
 - assessment
 - protection plan
 - implementation

Soque Partnership

Objectives

- Perform a comprehensive baseline watershed assessment
- Characterize non-point source (NPS) pollution inputs in the watershed
 - bacteria
 - sediment
 - stormwater
- Build consensus about water protection practices
- Develop a watershed protection plan
- Implement the plan
- Document water quality improvement

We in the Soque are not alone...

- U.S. EPA National Water Quality Inventory (2009)
 - 72,305 stream miles do not meet state water quality standards for pathogens
 - 29% of all impairment
- Georgia EPD 305(b)/303(d) list (2010)
 - 4,320 stream miles 303(d) listed for pathogens
 - 55% of all impairment
- Sediment / biological impairment

Fecal coliform

Indicator of pathogen presence – cheap and easy

- Sources
 - stormwater (urban) runoff
 - leaking/broken sewer lines
 - domestic pets
 - livestock
 - failing septic systems
 - illegal connections
 - straight pipes
 - combined sewers
 - downspouts
 - wildlife

Credit: Alan Cressler

- Implications
 - human health (primary contact recreation)
 - environment (aquatic life)

Success with bacteria

- Identification of bacterial "hot spots"
 - consistently high levels over time
- Prioritization of corrective action locations
 - based on data and accessibility
- Implementation of management/protection measures
 - e.g. best management practices
- Documentation of water quality improvements
 - routine monitoring
- Attainment of water quality standards
 - fecal coliform

Hot spot ID

- *E. coli* as indicator
- Quarterly samples at 75 locations
- Collected by subwatershed
- Minimize spatial and temporal variation

Farm projects

- 16 farm conservation plans:
 - 765.1 acres under contract;
 - 46,442 linear feet of exclusion and cross fencing;
 - 111,756 square feet of HUA;
 - seven stream crossings;
 - six water wells;
 - Approximately 549 animals (predominantly beef cattle) have been excluded from surface waters.

To delist for bacteria...

- Sixteen grab samples are required, specifically:
 - four samples collected within a 30 day period;
 - over four calendar quarters;
 - to calculate four geometric means;
 - that meet WQ standards

Sampling to delist

- To minimize potential bias, all samples were:
 - collected at the same location;
 - on the same day of the week;
 - at approximately the same time of day;
 - regardless of weather conditions
- Samples were transported to the city of Clarkesville WWTP for fecal coliform analysis
 - certified laboratory analysts

Sediment

Stormwater management

- Raingardens = infiltration
- Rainwater harvesting
- Site design

Rain Garden Construction

The Clarkesville Greenway

Model of Better Stormwater Management

Some models exist

Some we have to build from scratch.

Purpose of Community Garden

- Way to expand use and enjoyment of the Greenway
- Tool for teaching sustainability
- To preserve Habersham County's agricultural heritage
- Demonstration project for native plants, water conservation, soil building and soil conservation.
- Place to teach organic gardening / farming principles
- Way to increase the availability of local organic food
- Great Activity for meeting people and creating community

Learning to Grow 3 more ways

In a greenhouse from seed to plant

3 1.2 4 1.1 0.3 5 0.9 6 6 0.9

streambank to hold soil in place

On barren soil

reclamation and rebuilding

Fairview Elementary

Assessment - building watershed science

Protection begins with understanding the problem

Landcover for subwatersheds of the Soque River

Sub- watershed	Area Square miles	% Forest	% Agriculture	% Urban
Headwaters	17.3	90.9	5.4	3.1
Raper Creek	9.6	91.2	4.2	3.7
Shoal Creek	9.8	82.9	5.9	6.5
Deep Creek	30.2	57.5	23.6	11.3
Beaverdam Creek	14.6	59.7	23.7	7.5
Hazel Creek	31.9	46.8	24.5	16.3
Yellowbank Creek	6.7	48.3	28.9	7.9
Total Watershed	159.8	64.3	18.3	9.6

Soque River Sub-basins

Educational activities

- 6th Grade Water Field Days (2) have been held, hosting a total of more than 500 students;
- Middle School Water Quality Summer Camps (2) (1 week long) have been held with 22 students attending;
- **Brochures** have been developed and distributed on:
 - Raingardens
 - Rainbarrels
 - Cattle exclusion projects

*Public meeting November 18, 2010 - Courthouse @ 7:00 p.m.

6th Grade Field Day

- 280 students
- 12 stations

Summer Day Camp 7th-8th Grade

Southeast Watershed Forum

Model Water Quality Projects and Codes that Encourage them

What are your challenges?

Stormwater problem in downtown Cornelia

What are your successes?

Stormwater problem in downtown Cornelia

Building Land Based Economies

Northeast GA Locally Grown

These Projects Share One Thing

Community Garden

Streambank planting

Rain Gardens

Site stabilization of school sites

Local Food Market

Greenhouse propagation of organic starts, rain garden and streamside plants

Conclusions

- Local involvement
- Data
- Funding
- Watershed approach
- Process
 - ID causes
 - Prioritize
 - Implement
 - Monitor

Questions

 Duncan Hughes dhughes@northgatech.edu

