2019 Spring AICP Exam Review

AREAS OF PRACTICE
TRANSPORTATION AND INFRASTRUCTURE

Claudia M. Bilotto, AICP
WSP USA
Areas of Practice

I. Introduction and Format of Review
 A. Who Are the Players?
 B. Planning and Engineering Principles
 C. Planning Approach, Practices, and Tools

II. Transportation Planning
 B. Modal Areas
 C. Integrated Planning
 D. Equity of Access

III. Infrastructure Planning
 II. Range of Community Systems
 III. Integrated Planning

IV. Summary
Planning and Engineering Principles

- Much of the development of transportation infrastructure involves **BOTH planning and engineering disciplines**.
- Transportation is a **very data-driven** endeavor.
- The transportation planning framework is **based on the “scientific method”**.
- **Safety trumps every other consideration** in transportation.
- **No single entity is responsible for transportation systems.** It is a very distributed system of responsibilities and resources.
- Central principles include **“cost/benefit analysis”, multimodal level of service analysis, “performance metrics”** and **multi-year implementation timeframes**.
Transportation - Modal Areas

I. Roads and Bridges

II. System Safety, Operations, and Intelligent Transportation Systems (ITS)

III. Transit (Bus, Rail, Paratransit, and On-Demand Services)

IV. Freight and Logistics (Truck, Rail, Pipeline, Aviation, Waterways)

V. Active Transportation (Pedestrian, Bicycle, and Trail Systems)

VI. Parking

VII. Transportation Demand Management
Why Transportation Planning is Challenging

MUTIPLE SCALES
- Multi-State
- Statewide
- Regional
- Corridor
- Countywide
- Sector
- City-wide
- Neighborhood

MUTIPLE PLAN PURPOSES AND PLANNING HORIZONS
- Transportation Plan
- Land Use/Urban Design Plan
- Parking Plan
- Economic Development Plan

MUTIPLE PARTNERS
- Federal Agencies
- State Agencies
- Regional Entities
- Local Jurisdictions
- Business
- Environmental
- Social Justice
- Good Government
- Others

MUTIPLE POLICY AREAS
- Governance
- Mobility
- Economic Development
- Environment
- Finance
- Social Justice
- Sustainability
- Climate Change
- Resiliency/Emergency Management
Typical Transportation Planning Approach

1. Define the Problem
2. Clarify Values
3. Create Vision and Select Goals, Objectives, and Performance Measures
4. Forecast Likely Consequences of all Alternatives
5. Evaluate and Select A Set of Proposed Courses of Action
6. Review/Monitor Transportation System Performance
7. Formulate/Define Alternative Scenarios (Themed Approaches to Addressing the Problem(s))
8. Develop Refined Plan and Plan Implementation Program (roles, costs, funding sources, time-frames, partnerships, etc.)

Public and stakeholder outreach activities carried out through the entire process

(critically important feedback loop)
Sustainability as a Guiding Principle

Social-Environmental
- Environmental Justice
- Natural Resources Stewardship
 Locally & Globally

Environmental
- Natural Resource Use
- Environmental Management
 Pollution Prevention
 (air, water, land, waste)

Environmental-Economic
- Energy Efficiency
- Subsidies / Incentives for use of Natural Resources

Social
- Standard of Living
- Education
- Community
- Equal Opportunity

Economic
- Profit
- Cost Savings
- Economic Growth
- Research & Development

Economic-Social
- Business Ethics
- Fair Trade
- Worker’s Rights

Adapted from the 2002 University of Michigan Sustainability Assessment
Huge Backlog in Unmet Mobility Needs

Biennial National and State Report Cards

- Overall national assessment and ratings for each state
- Urges actions to deal with the backlog
- Impetus for new federal transportation asset management rules that require states, MPOs, and transportation agencies to comply

For more info: www.infrastructurereportcard.org

2017 Infrastructure Grades

<table>
<thead>
<tr>
<th>Category</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation</td>
<td>D</td>
</tr>
<tr>
<td>Bridges</td>
<td>C+</td>
</tr>
<tr>
<td>Dams</td>
<td>D</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>D</td>
</tr>
<tr>
<td>Energy</td>
<td>D+</td>
</tr>
<tr>
<td>Hazardous Waste</td>
<td>D+</td>
</tr>
<tr>
<td>Inland Waterways</td>
<td>D</td>
</tr>
<tr>
<td>Levees</td>
<td>D</td>
</tr>
<tr>
<td>Parks and Recreation</td>
<td>D+</td>
</tr>
<tr>
<td>Ports</td>
<td>C+</td>
</tr>
<tr>
<td>Rail</td>
<td>B</td>
</tr>
<tr>
<td>Roads</td>
<td>D</td>
</tr>
<tr>
<td>Schools</td>
<td>D+</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>C+</td>
</tr>
<tr>
<td>Transit</td>
<td>D-</td>
</tr>
<tr>
<td>Wastewater</td>
<td>D+</td>
</tr>
</tbody>
</table>
System “Congestion” and Economic Prosperity

Truck Traffic is Growing 2-3 Times Faster than Passenger Traffic

National Highway System Routes and Truck Volumes Per Day - 2040
Resiliency, Climate Change, and GHG Reduction

How can we create better transportation systems that are resilient to natural and man-made disasters?
Road and Bridge Systems

Organizing Concepts: **Roadway Functional Classification**
- Expressways/Arterials/Collectors/Local Streets
- Each Functional Classification has “Owners” and
 Accepted Professional Standards for Planning, Design
 and Operations

Fundamental Concepts for Road and Bridge Systems
- **“Level of Service”** – measuring how well is the
 overall system and its subsystems (modes) working
- Creating **“grid networks”**, where possible
- **Uniformity of design and operations** – for safety
 reasons
- Practices are evolving toward **“complete streets”**
 (**integrating multiple modes of transport**) within
 local streets and some minor arterials
Concept of “Complete Streets”
Concept of “Multimodal Transportation”
Transportation Systems Operations and Management (TSM&O)
Intelligent Transportation Systems (ITS)

Maintaining safe and reliable transportation systems, especially for expressways and arterials, is one of the primary challenges for transportation planners. This is critical for:

- Attracting new and keeping existing businesses and firms
- Supporting freight transport, especially in major markets
- Supporting “quality of life” for people and companies
Bus and Rail Transit and On-Demand Services
Very High Interaction Between Transit and Land Use
Concept of Transit-Oriented Development – Phoenix, AZ
Distinguishing Characteristics of Transit Systems

- **Type of Technology** (i.e. heavy rail, light rail, express bus, local bus, etc.)

- **Type of Right-of-Way** (i.e. exclusive, such as fixed guideway for heavy rail; mixed (i.e. where light rail and cars interact in the same right-of-way, etc.)

- **Operating Characteristics** (i.e. express, local, or intercity service)
Rural Transit Planning

Rural transit systems operate across the U.S. in communities of less than 50K in population. They are crucial because they:

- Provide only option for citizens who cannot or should not drive
- Allow people to access educational opportunities and jobs
- Allows people to access health care, especially specialized services in larger communities
Freight and Logistics Planning

Freight System in US is comprised of:

- Interstate Highways
- Other National Highway System (NHS) Routes
- Other Non-NHS Routes
- Railroads
- Deepwater Ports
- Inland Waterways
- Pipelines
- Airports
National Trade Gateways

These gateways illustrate the importance of efficient intermodal transportation to support global markets.

Gateways include:
- 11 ports
- 5 land-border crossings
- 9 major airports
Freight Intermodal Facilities

For the transfer of goods between transport modes.
Can be served by:

- Long-haul rail
- Long-haul trucks
- Less-than-truckload (LTL) trucks
- Container trucks
- Containers on flatcars (rail)
- Pipelines
- Cargo ships
- Airlines
Widening of the Panama Canal

Comparison between Panamax and Post-Panamax Container Vessels

- **Panamax**
 - Length of Panamax Vessel: 294m
 - Draft: 12m
 - Beam: 32m

- **Post-Panamax**
 - Length of Post-Panamax Vessel: 366m
 - Post-Panamax Draft: 15m
 - Post-Panamax Beam: 49m

Comparison Table

<table>
<thead>
<tr>
<th></th>
<th>Panamax</th>
<th>Post-Panamax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>4,500</td>
<td>12,000</td>
</tr>
<tr>
<td>Containers(TEUs)</td>
<td>32m (106')</td>
<td>49m (160')</td>
</tr>
<tr>
<td>Dimensions</td>
<td>294m (965')</td>
<td>366m (1,200')</td>
</tr>
<tr>
<td>Beam</td>
<td>12m (39.5')</td>
<td>15m (50')</td>
</tr>
<tr>
<td>Length</td>
<td>294m (965')</td>
<td>366m (1,200')</td>
</tr>
<tr>
<td>Draft</td>
<td>12m (39.5')</td>
<td>15m (50')</td>
</tr>
</tbody>
</table>
Active Transport (Pedestrian, Bike, and Trail Systems)

• We are all pedestrians many times each day.

• Almost all trips of various modes start and end with some distance covered on foot.

• Planning and development of active transport systems is often overlooked because the responsibility for it is distributed across a wide array of agencies.

• Federal Americans with Disabilities Act (ADA) and safety are critical elements of active transport.

Safety is the major issue with pedestrian systems.
Innovations in Bicycle Facilities

Buffered Bike Lanes

Bike Boulevards

“Sharrows”

Two-way Cycle Tracks in Constrained Environments
Trail Systems

- Can accommodate multiple users (walking, bicycling, horse-riding, skating, etc.)
- Can serve transportation or recreational purposes
- Opportunities for Natural Preservation and Repurposing of Transportation Assets
Parking Systems

- The need for parking facilities has a huge impact on the use of urban land.
- Auto-oriented cities use between 4 – 13 times more land for pavement, etc. than transit-oriented cities.
- Parking is regulated mostly by local government ordinances.
Transportation Demand Management

Includes programs and services aimed at managing available transportation system capacity

- Ridesharing
- Facility Pricing
- Flexible work hours
- Teleworking
- Promotion of transit use
Infrastructure Planning
Infrastructure Planning

- Planning Principles
- Approach, Practices, and Tools
- Range of Community Infrastructure Systems
 - Water Treatment and Distribution
 - Wastewater Collection, Treatment, and Disposal
 - Solid Waste Collection, Treatment and Disposal
- Communications Systems
- Power/Energy Systems
- Ground Transportation (various modes)
- Community Facilities
- Green Infrastructure
- Blue Infrastructure
- Integrated Planning

- Additional Infrastructure Systems Supporting Communities
 - Airfields and Other Aviation Facilities
 - Water Resource Developments (i.e. irrigation, hydroelectric power, flood control, recreation, and navigation)
- Public housing
Typical Infrastructure Planning Steps

- Establishment of goals and objectives
- Problem identification and analysis
- Solution identification and impact analysis
- Formulation of alternatives and analysis
- Recommendations
- Decisions
- Implementation
- Operations and Management
Today’s Most Important Infrastructure Issue: Asset Management

- Applies to ALL types of infrastructure systems
- Tracks extent, type, condition, age, remaining useful life, and cost to replace, among other data
- Serves as an essential decision-making tool on how/when/where to invest in public infrastructure
- Data-intensive and requires well established analytic and monitoring processes
- Stronger and stronger ties between asset management and federal and state funding
Range of Community Infrastructure Systems

- Water Treatment and Distribution
- Wastewater Collection, Treatment, and Disposal
- Solid Waste Collection, Treatment and Disposal
- Communications Systems
- Power/Energy Systems
- Ground Transportation (various modes)
- Community Facilities
 - Government buildings
 - Schools
 - Libraries
 - Hospitals
 - Police stations
 - Fire stations
 - Prisons
 - Public garages

Two major categories of infrastructure projects:

- “New” projects to provide expanded service for new growth and development

OR

- “Rehabilitation, reconditioning, or reconstruction” projects to upgrade, repair, restore system capabilities
Water Systems

- Provision of water is a municipal (city or county) function
- It may involve agreements upon multiple jurisdictions
- Collection (from natural sources), treatment, and distribution are the major elements of the overall system
- Some communities set up “water authorities” or enterprises to manage water resource activities
- Availability of water and wastewater systems is a PRIMARY determinant of what types and intensities of land use can be supported in a community
Wastewater Systems

Wastewater systems collect and dispose of household wastewater generated from toilet use, bathing, laundry, and kitchen and cleaning activities. Any structure with running water, such as a house or office, must be connected to one of the following wastewater disposal systems:

- **Centralized** systems are *public sewer systems* that serve established towns and cities and transport wastewater to a central location for treatment.

- **Decentralized** systems do not connect to a public sewer system. Wastewater may be treated on site or may be discharged to a private treatment plant.
Electric/Gas/Power Systems

• Production and distribution of electric, gas and other power/energy systems is largely a private sector function.

• Public sector planners have a role in helping to determine the siting of power-related facilities (i.e. high capacity lines, generation facilities, etc.).

• Typically, these public sector planning activities occur in high growth communities or regions or in areas with significant natural resources.

• New issues are emerging with the introduction and/or growth of new energy sources – solar, wind, natural gas, etc. – working with the public on these issues is an important role for planners.
Community Facilities

Typically Includes:

• State, regional, and local government buildings (i.e. offices, clinics, labs, etc.)
• K-12 schools
• Colleges and universities
• Sports arenas
• Libraries
• Hospitals/Wellness Centers
• Police/Fire/Emergency Facilities
• Jails/Prisons
• Parks and Recreation Areas
• Public Garages
• Other Facilities
Green Infrastructure

• Uses vegetation, soils, and other elements and practices to filter pollutants from stormwater runoff before it is discharged into water bodies
• Creates healthier urban environments
• Is a patchwork of natural areas that provides habitat, flood protection, cleaner air, and cleaner water.
Blue Infrastructure

Blue landscape elements are linked to water. They can be pools, ponds and pond systems, wetlands, and artificial buffer basins or water courses. Together they form the blue infrastructure system.
Integrated Infrastructure Planning

Concept of “Smart Cities” – Using Technology, Nature, and Quality Design of the Built Environment to Create and Maintain Livable, Prosperous, Sustainable Places
Thank You for Attending Today

Claudia Bilotto, AICP
Atlanta Area Manager
WSP
claudia.bilotto@wsp.com
404-364-2651