Pedestrian Infrastructure Data Collection using Ground-Level Video

Daniel Hunsaker, Katherine Hudachek, Angshuman Guin, and Randall Guensler

Georgia Institute of Technology School of Civil and Environmental Engineering

APA Georgia GPA 2025 Spring Conference Gainesville, Georgia March 13, 2025

Outline

- > Introduction
 - Pedestrian planning
 - > Overview of project
 - \succ The study area
- > Project
 - > Implementation steps
 - > Vehicle collection and network creation
 - > Wheelchair video collection
 - > Deployments
 - ➤ Data analysis
 - > Machine vision work
 - ➤ Results
- > Conclusion
 - > Future Works

Pedestrian Planning

- Accessible programs, policies, and services
- > Inventory of assets
- > ADA transition plans

Source: Georgia Tech Data Collection Team 2023-2024, City of Palo Alto, CA

Current State of Sidewalks

The Atlanta Journal-Constitution

METRO ATLANTA **Gwinnett County and Snellville partner to work** on sidewalk and water projects

Snellville is adding more than a mile of sidewalks at a cost of \$1.9 million (January "Pedestrian safety and sidewalk connectivity are 2023)

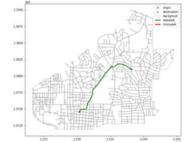
The Atlanta Journal-Constitution

Gwinnett commission approves \$1M for sidewalks around Highway 29

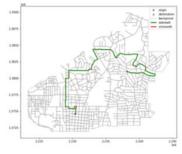
Connecting residential neighborhoods

integral parts of a community" (Feb 2023)

- January 2025: Gwinnett **County SPLOST Tax** Initiative for Transportation
- Enhances 1.78 miles of \succ Peachtree Industrial Boulevard, including new sidewalks

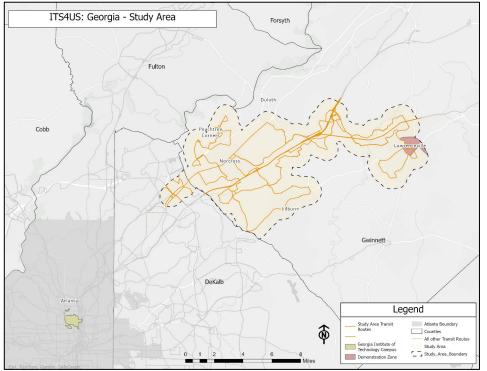


Impedance and Routing


- > Wheelchair impedance
 - Sidewalk presence
 - Pathway width
 - $\circ \ \ \, \text{Level surfaces}$
 - \circ Surface condition
 - Missing ramps
 - **Etc.**
- > Mobility mode routing:
 - Infrastructure inventory, design, and condition data
 - > Route impedance

Travel Time + Surface Condition Impedance

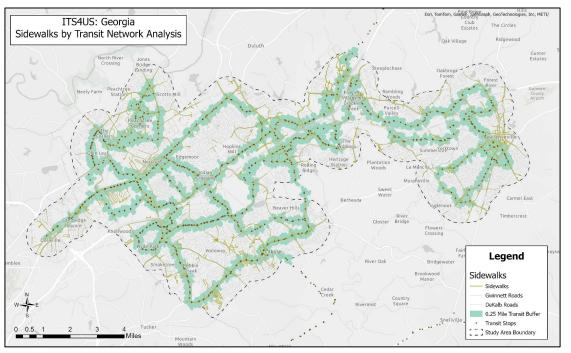
Travel Time + All Attribute Impedance



ADA Mobility Mode	Examples of Potential Impacts of Missing Curb Ramp on Impedance
No Disability	- potential trip hazard
Low Vision	- significant trip hazard
Manual Wheelchair	- forced to divert to the street - tip over hazard

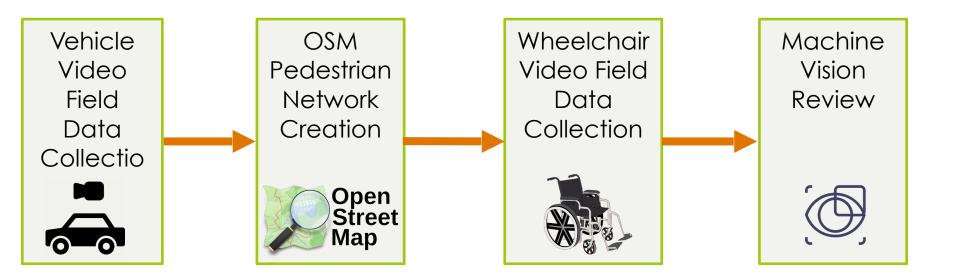
Image Credits: Guensler, Guin, Laval, Passmore, Sivakumar, Fan, and Lu

Research Overview


Source: Georgia Tech Data Collection Team 2023-2024

- ITS4US Deployment Program Georgia DOT
- Develop a comprehensive pedestrian infrastructure network in the study area
- Graduate students and a team of ~50 undergraduate students for:
 - Field data collection
 - Spatial and network analysis
 - Machine vision

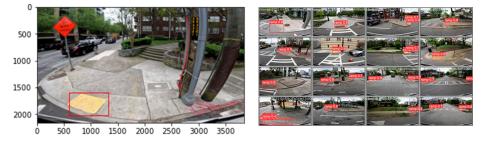
Georgia Tech


Gwinnett County Study Area

- ≻Gwinnett County, Georgia
- ≻Over 500 miles of sidewalks
- >Transit service area
 - Ride Gwinnett bus routes
 - Doraville MARTA station
- ≻~218 miles of sidewalk are walkable from transit stops

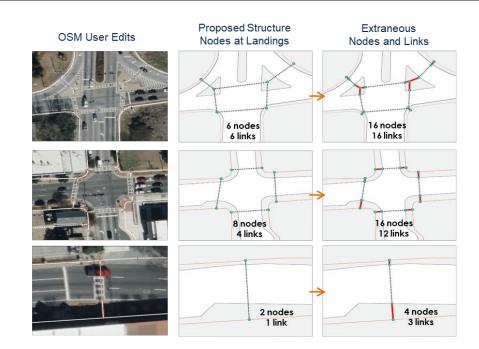
The Process

Vehicle Video Data Collection GoPro Cameras (Front and Both Sides)



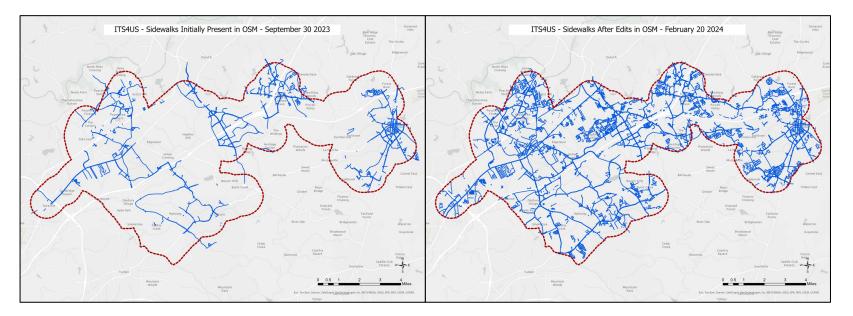
Source: Georgia Tech Data Collection Team 2023-2024

Vehicle Flythrough Data Collection



- Identify presence and absence of sidewalks
- ≻GoPro cameras
 - > Passenger-side
 - ➤ Driver-side
 - > Front view
- >Web-based flythrough
 > Log presence/absence
 > Machine vision flythrough

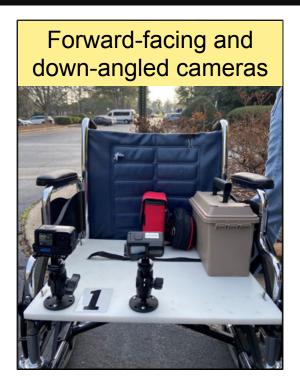
Pedestrian Network Creation in OSM


- Complete pedestrian network in OpenStreetMap (OSM)
- The team had to add more than 85% of sidewalks
- Link-and-node structure (more refined than ways)
 - Developed a unique mapping schema
- Lots of QA/QC required

Source: Georgia Tech Spatial and Network Analysis Team 2023-2024

Pedestrian Network Updates

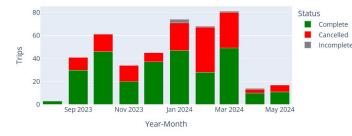
Identified 540 miles of sidewalks not in OSM (238% increase)

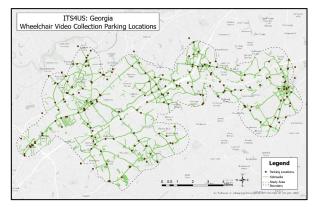


12

Source: Georgia Tech Spatial and Network Analysis Team 2023-2024

Wheelchair Video Data Collection Walking Speed (2-3 miles/hour)





Data Collection Scheduling

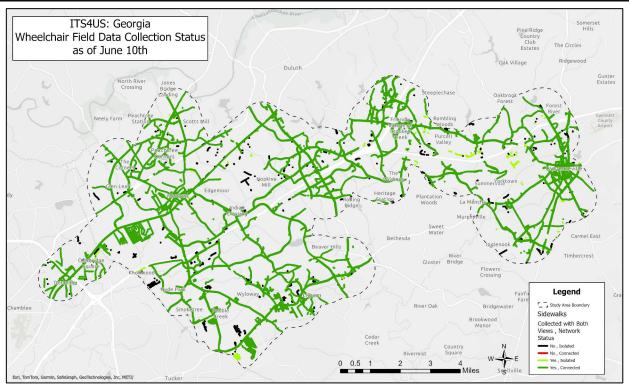
Monthly Totals

≻Advanced MS **Excel process** \succ Totals: ≻ 284 successful deployments $> \sim 10$ months > 650 hours of Video

Source: Georgia Tech Data Collection Team 2023-2024

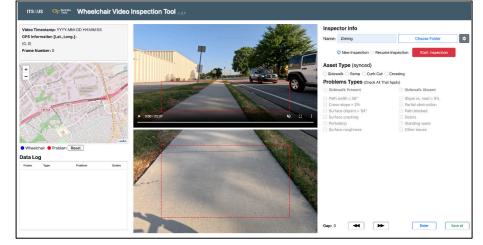
Wheelchair Video Routes and Data

- Create data collection routes
 - ArcGIS
 - QGIS (opensourced)


Data plotted by point location (about 29 million camera frame points)

Final network after collection

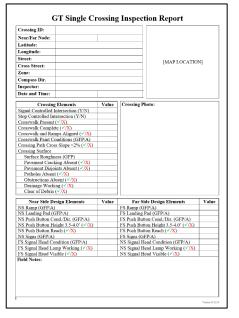
Wheelchair Video Data Collection in Gwinnett County


- > ~1,200 total road miles
 - ~655 miles w/sidewalks
 - ~512 miles w/o sidewalks
 - Collected ~461 miles
- > Protocols:
 - > Safety
 - Routing
 - Intersection inspection
 - ≻ Etc.
- > Full video archive
 - GoPros also collect vibration and gyro data

Source: Georgia Tech Data Collection Team 2023-2024

Video Inspections for Asset Defects Sidewalks, Crossings, Curb Ramps, Curb Cuts

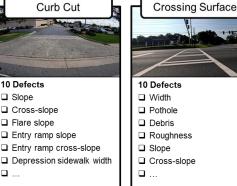
Remote video inspection
 Map location panel
 Rolling video images
 Inspection inputs
 Click image to pause video and document defect


Supported browsers include Chrome®, Edge®, and Firefox®

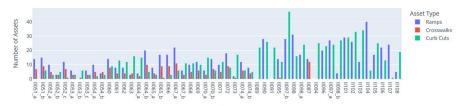
Video Inspectors can identify more than 90% of ADA issues, such as: width issues, obstructions, surface defects, changes in surface height >1/4", cross-slope issues, debris, standing water, etc.

17

Manual Inspection of Asset Features for use in Technoeconomic Analyses



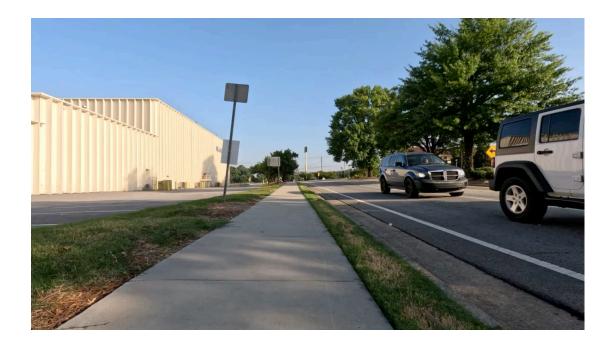
T Delects	
Width	
Pothole	
Debris	
Roughness	
Blocked	
Standing water	
_	


Total Number of Different Assets per Trip

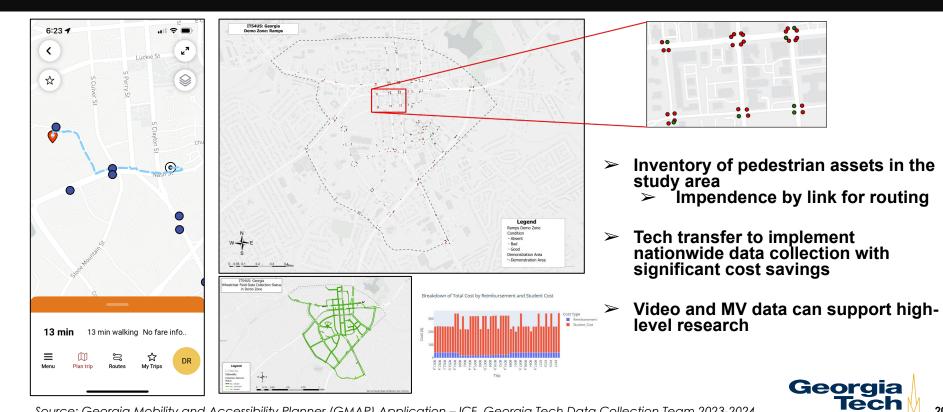
□ Width

•

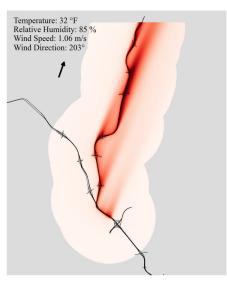
Flare slope


Landing Pad

Source: Georgia Tech Data Collection Team 2023-2024


Wheelchair Video Playback Application

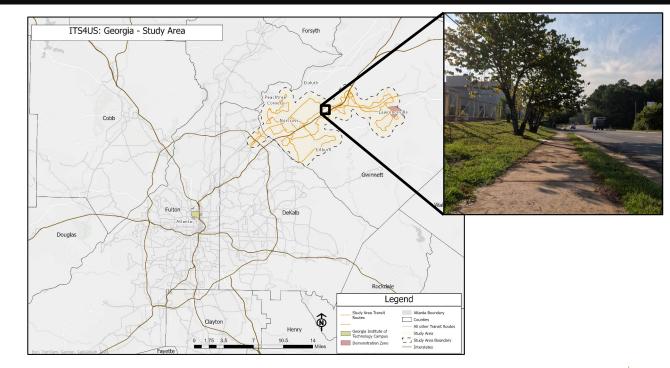
- Allows planners and engineers to view the video of their network
 - Verify problems identified by MV
 - Refine sidewalk repair cost estimates
 - Support analysis for pedestrian planning


Results

Source: Georgia Mobility and Accessibility Planner (GMAP) Application – ICF, Georgia Tech Data Collection Team 2023-2024

More Analyses are in the Works

- Adoption of more advanced machine vision tools
- Incorporating TransitSim and SidewalkSim Python packages
 - Shortest path tools for mobility assessment
- > Integrate exposure models for:
 - Heat risk assessment
 - Pollutant concentration health impact assessment



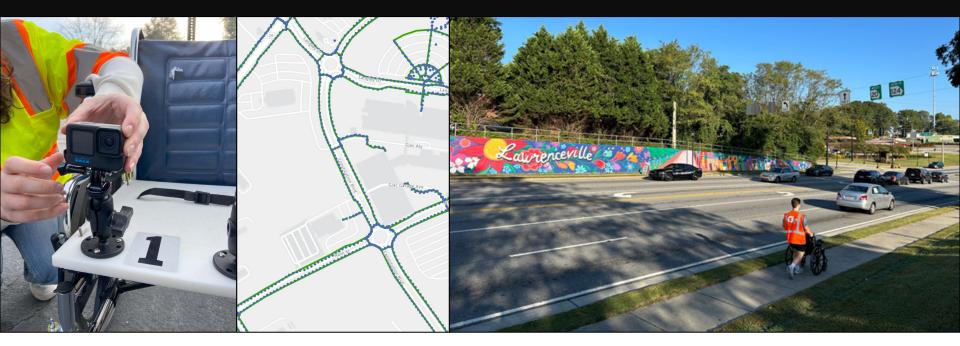
16-17 18-24						6.499 8.8					93.51 91.18	
25-34						9.3	4%				90.66	%
35-44						7.96	i%				92.04	%
45-54						5.42%	ó				94.58	%
55-64						5.09%	b				94.91	%
65+						9.7	/1%				90.29	%
	0K	2K	4K	6K	8K	0%	5%	10%	15%	20%	25%	
	Weighted Trip Count				Percent of Trips (showing 0-30% for clarity)						()	
Safe Travel		8.26%		27.68%		21.16	%	10	5.40%	10.49	1%	
Heat Risk		20.65%		33.36	%		21.4	1%	10.9	9%		

What's Next.....

- Finalize reports
 End of spring
- Commit code to
 Github
 End of spring
- Seeking ongoing collaborations

Conclusions

- >Inventory of sidewalks
- ➤Machine vision processes
- >Open-source technology
- Lower cost data collection
 Video archives



Acknowledgements

This work is supported by the Federal Highways Administration and/or the Georgia Department of Transportation and the Atlanta Regional Commission. The information, data, and/or work presented herein were funded in part by an agency of the United States Government, state government, and/or local government. Neither the United States Government, state government, local government, now any agencies thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, state government, local government, or any agencies thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, state government, local government, or any agency thereof. The materials presented herein do not constitute a standard, specification, or regulation.

Questions?

Daniel Hunsaker – dhunsaker3@gatech.edu

Graduate Research Assistant School of Civil and Environmental Engineering Dual Degree – M. City and Regional Planning / M.S. Civil Engineering

